ADVANCED MAC/PHY DESIGN: A COOPERATION CASE STUDY

Chris Hunter, Patrick Murphy, Ashu Sabharwal WARP Workshop 2010

(work available in CISS 2010 proceedings)

- MIMO boosts speed/reliability
- Requires an antenna array
 - Impractical for some applications (e.g. cellphones)

• Pitfalls:

- In high-SNR situations, "Relay Phase" is pure overhead
- How do you synchronize source and relay?

- Pitfalls:
 - In high-SNR situations, "Relay Phase" is pure overhead
 - How do you synchronize source and relay?

- Distributed On-demand Cooperation (DOC)
- Completely severed from centralized scheduling
- Only cooperates when it can help
- Emphasis on practicality; we've built it

- MAC Details
- PHY Details
- Implementation Details
- Measurement Results

DOCMAC

CSMA/CA assumes every packet loss is due to a collision

DOCEXAMPLE

DOCEXAMPLE

DOCEXAMPLE

DOCPHY

$$ANT_A = [s_0, -s_1^*, s_2, -s_3^*, \dots]$$

DOC PHY Distributed Alamouti STBC

$$ANT_A = [s_0, -s_1^*, s_2, -s_3^*, \dots]$$
 $ANT_A = [s_0, -s_1^*, s_2, -s_3^*, \dots]$

DOC PHY Distributed Alamouti STBC

Relay Phase

$$ANT_A = [s_0, -s_1^*, s_2, -s_3^*, \dots]$$
 $ANT_A = [s_0, -s_1^*, s_2, -s_3^*, \dots]$

ANT_A =
$$[s_0, -s_1^*, s_2, -s_3^*, \dots]$$

ANT_B = $[s_1, s_0^*, s_3, s_2^*, \dots]$

PowerPC

Logic

DOC MIMO Reference Design

Source

Data

Data

Destination

NACK

Relay

Data

Solution: Harden packet responses to fabric

200ns

Source

Data

Data

Destination

Relay

NACK

Data

DOC MPLEMENTATION Autoresponder

DOCRESULTS

Throughput Improvement over CSMA/CA Relay Location Y (meters) 20% 5 15% 10 10% 10% 15 5% 5% 20% 20 35 Relay Location X (meters)

- 2452 MHz RF
- AF relay
- 1400 byte packets

- TGn B channel model
- BPSK/QPSK header/payload
- No synchronization "cheats"

Percent of Payloads Employing Cooperation

warp.rice.edu