W A R P WIRELESS OPEN-ACCESS
RESEARCH PLATFORM

Lab 3: Building a Simple Transceiver

Patrick Murphy & Siddharth Gupta

Rice University
WARP Project

Document Revision 9

March 27, 2010



Lab 3: Building a Simple Transceiver

WA R P WIRELESS OPEN-ACCESS
RESEARCH PLATFORM

1 Introduction

The goal of this lab exercise is to build a simple transceiver and test it in hardware. The transmitter
and receiver models will be built in System Generator, converted to peripheral cores and integrated
with WARP platform support packages in Xilinx Platform Studio. When complete, the design will use
the WARP FGPA and Radio boards to transmit a sweeping sinusoid and measure RSSl in real-time.

This lab exercise has five steps:

1. Design a transmitter in System Generator which generates a complex sinusoid with a sweep-

ing frequency.

2. Integrate the transmitter core with WARP support packages in a Xilinx Platform Studio (XPS)

project.

3. Test the transmitter in hardware.

4. Design a System Generator model with computes the running sum of RSSI.

5. Integrate the RSSI summing core into the same XPS project and test it in hardware.

Each of these steps is explained in detail below.

Note: All files are stored in C:\workshop\. This location will be referred to as .\ below.

2 Sinusoid Generator Model

The first step is to build the sweeping sinusoid generator model in System Generator. This model
will implement a simple transmitter which generates a complex sinusoid whose frequency is con-
stantly sweeping. The block diagram in Figure 1 shows the basic design for your transmitter.

Slgvaetip &:umulatirJ

Fix30_30
() Processing

(O Registers

(O Ports

Sinusoid
Generator

DDS Compiler 2.1
SFDR: 92dB
Freq. Resolution: 0.04

Fix16_15

Hz

Figure 1: Block diagram of sweeping sinusoid transmitter

1. Open MATLAB 2008a and change directory to . \Lab3_TxRx\sysgen\.

2. Open the System Generator model sweeping_tx.mdl.

3. This model contains just the registers and DAC output ports for your design. Build the sweep-
ing sinusoid transmitter using blocks from the Xilinx blockset. Figure 1 provides some sug-
gested datatypes and blocks. A complete model is shown in Figure 2. A copy of the complete
model is also saved in .\Lab3_TxRx\sysgen_solution\.

ver. 9: 27-Mar-2010 http://warp.rice.edu


http://warp.rice.edu

WIRELESS OPEN-ACCESS
Lab 3: Building a Simple Transceiver WA R P RESEARCH PLATFORM

Radio 2 DA Q
== FreqSweepRate' == .
Register. FreqSweepRate Bool ol e ine|-F1E 15 W A R P daubl
dla Fix_30_30 b I:I
Fix_30_30 o it Fix 16_16 douhl
g ata cosin WA R P Scope
UFix_1_Q Bool
dout —.' en -
Convert DS Compiler 2.1 Radio 2 DAC |

Register: FreqSweepEnable Accumulatar

=< FregqSweepEnahla’ == "
&

Systermn EDK Processor
Generatar

Figure 2: System Generator design of sweeping sinusoid transmitter

3 Generating the Transmitter Core

The next step is to convert this model into a peripheral core with a PLB46 bus interface. This
interface will allow the PowerPC processor to write the registers in the model to change its behavior
at run-time.

1. Open the Simulink library browser, expand the Xilinx Blockset and click on the Index group.
Find the EDK Processor block in the block listing. Drag this block into the sweeping_tx model.

2. Double click the EDK Processor block and click Add. This will populate the memory map
with entries for each software-accessible register in the model. In this case, there should be
two registers: FreqSweepEnable and FreqSweepRate. Click OK to dismiss this window.

3. Double-click the System Generator block. Make sure its parameters match those shown in
Figure 3.

4. Click the Settings button. In the EDK Project section click the folder icon. Navigate to
.\Lab3_TxRx\xps\system. xmp, click Open, then click OK.

5. Finally, click Generate. System Generator will construct the VHDL design of your model and
export it to the EDK project you'll use below. This process will take a few minutes. If it's
successful, the dialog box will say Generation Complete.

6. When the process completes successfully, save and close the model and exit MATLAB.

4 Integrating the Transmitter Model

We have provided a template project in Xilinx Platform Studio for this exercise. This step integrates
your custom transmitter with the hardware/software platform in the XPS project.

1. Open Xilinx Platform Studio. When prompted, select Open a recent project, click OK, then
navigate to .\Lab3_TxRx\xps\system.xmp.

2. Click the IP Catalog tab on the left of the screen, and expand the Project Local pcores /
USER category.

3. Double-click the sweeping_tx_plbw core and click ‘Yes’.

4. Click the Bus Interface button in the middle of the screen and look for the sweeping_tx_plbw
core in the list of included peripherals. Expand the core’s entry and click the hollow yellow
circle to attach the core to the PLB.

ver. 9: 27-Mar-2010 http://warp.rice.edu 2


http://warp.rice.edu

WIRELESS OPEN-ACCESS
Lab 3: Building a Simple Transceiver WA R P RESEARCH PLATFORM

<) System Generator: sweeping_kx !E

— Compilation Options

Compilation :

Ii“fxpor‘t as a pcore to EDK Settings... |

Part :
[ |jvitexap xcavpro-strist7

Target directory

I.Isweepinng_vDD| Browse... |

Synthesis tool ; Hardware description language :
st =] Jurol |
[ | Create testhench I~ | Import as configurahle subsystem

— Clocking Options

FPGA clock period (ns) : Clock pin location :

fio |

Multirate implementstion : DCM input clock period (ne) :
[eiock Enables =] oo

I~ Provide clock enable clear pin

|.i.-:-: ording to Block Settings d

Simulink system period (sec) : h

Block icon display: IDefaun d

Generatel 0K | Apply | Cancel | Help |

Figure 3: System Generator parameters for PLB core generation

5. Switch to the Ports view and scroll down to the sweeping_tx_plbw entry. Expand the entry.
You'll see two ports: radio2_dac_l and radio2_dac_Q. These ports represent the two DAC
blocks in the System Generator model. For each port, click its drop-down list and choose New
Connection. This will create a new net for each port.

6. Scroll to the radio_bridge_slot_2 core and expand its entry. Scroll down the list of ports to
user_DAC_I and user_DAC_Q. In the drop-down list for each, select the corresponding new
net created in the previous step; the nets will probably be named sweeping_tx_plbw_0_radio2_dac_i
and sweeping_tx_plbw_0_radio2_dac_qg. By choosing these nets, you're connecting the out-
puts of the transmitter model to the FPGA pins mapped to the radio board’s D/A converters.

7. When complete, your ports list should look like those shown in Figure 4 (the order of the ports
may be different in your project).

8. Switch to the Addresses view and click Generate Addresses. When this process finishes,
the sweeping_tx_plbw core will have an automatically assigned memory address on the
PLB.

9. Choose Hardware — Generate Bitstream to begin the hardware implementation process. As
in the previous lab exercise, this step will take around 5 minutes. While it’s running, you can
look through the software project (described in the next section).

5 Driving the System from Software

1. We have provided a software project which handles the required radio configuration. This
software template is the minimum necessary to initialize the WARP radio boards and can be

ver. 9: 27-Mar-2010 http://warp.rice.edu 3


http://warp.rice.edu

WIRELESS OPEN-ACCESS
Lab 3: Building a Simple Transceiver WA R P RESEARCH PLATFORM

= < sweeping v pbw 0

- radio2_dac_q |sweeping tx plbw 0 radio2 dac q x|
‘e radio?_dac_i |sweeping tx plbw 0 radio2 dac i x|
- USER 10
- P aps e O
P 15232

- ok board config
-2 clock_generafor O
- <P radio_biridge_slof 2

user_DAC_0 sweeping tx plbw 0 radio2 dac g ]
user_DAC_| sweeping t2 plbw 0 radio2 dac i
- user_ADC_Q [No Connection ]
i yser_ADC_| [Na Connection ]

Figure 4: Port connections between sweeping sinusoid transmitter and radio bridge

extended to support custom peripherals. It also writes suitable values to the two registers in
the sweeping_tx_plbw core.

2. Switch to the Applications tab on the left of the screen. Expand the Lab3_Tx0Only project,
then expand its Sources list and double-click the one file entry.

3. Look through the C code to understand how the radio is setup and controlled through the
radio_controller core and driver. Scroll down in the code and look for the two lines which
write registers in the transmitter model. These lines start with XIo_0ut32. Notice the first ar-
guments in these function calls: XPAR_SWEEPING_TX_PLBWP_O_MEMMAP_FREQSWEEPENABLE and
XPAR_SWEEPING_TX_PLBWP_O_MEMMAP_FREQSWEEPRATE. These constants define the memory
addresses of the two registers in the transmitter model. The tools create these constants
automatically.

6 Testing the Transmitter in Hardware

1. Make sure your WARP FPGA board is connected to power and USB.

2. In XPS, Choose Device Configuration—Update Bitstream. This will compile any code changes
and update the FPGA programming file. If your C code has any errors, the compiler will print
messages in the XPS console. Correct these and re-run the Update Bitstream process.

3. Choose Device Configuration—Download Bitstream to program your WARP kit with your de-
sign. This process will print a bunch of status messages to the console. A successful down-
load will finish with Checking done pin...done.

4. If everything works, the serial terminal will print out boot messages. Type T to enable the
radio’s transmit path. The radio’s green LED will illuminate to indicate the radio is transmitting,
and your node will be generating a sweeping sinusoid at RF. You can observe the waveform
on the spectrum analyzer in the lab. It should look something like Figure 5. Type t to disable
the transmitter.

7 Adding the Receiver Model

For this step, you’ll build a simple receiver model which calculates the running sum of RSSI sam-
ples. Your model should implement the block diagram in Figure 6, which calculates the sum of the
64 most recent RSSI samples, and saves the sum to a register accessible from software.

ver. 9: 27-Mar-2010 http:/warp.rice.edu 4


http://warp.rice.edu

WIRELESS OPEN-ACCESS
Lab 3: Building a Simple Transceiver WA RPY s e

Figure 5: Spectrum Analyzer Output

1. Open MATLAB 2008a and change directory to .\Lab3_TxRx\sysgen\.
2. Open the System Generator model rssi_sum.mdl.

3. This model contains just the register and RSSI ports for your design. Build the 64-length run-
ning sum using blocks from the Xilinx blockset. Figure 6 provides some suggested datatypes
and blocks. A complete model is shown in Figure 7. A copy of the complete model is also
saved in .\Lab3_TxRx\sysgen_solution\.

: |
Radio RSSI + RSSI
t [Accumulator Sum
UFix10_0 & Fix11_0 & Fix18_0

Figure 6: Block diagram of RSSI running sum calculation

RS5| ADC Clock Generator
Outputs 10MHz (40MHz £ 4) signal
Fix 2 I - LIFix 1 ' _ LIFix i. ‘
- 1MSB radio2_rssi_clk Systerm EDK Processor
2-hit Counter Generator
Running surm Calculation
Outputs sum of 64 most recent RSS1 inputs
doublg n UFix 100 o . .
Constant  radio2_rssi_data _ a-b Fix 11 0 b q Fix 18 0 P din _
UFix 0 g dout|E 18 O doui{lzl
. Eloq
Delay Addsub ACcUmUIEtar e Scope
To Register

<< REE_SUM' ==

Figure 7: System Generator design of running RSSI sum calculator

4. Generate a pcore for this model and integrate it in your XPS project following the same flow as
for the transmitter. You should connect your core’s radio2_rssi_data and radio2_rssi_clk
ports to the corresponding ports on the radio_bridge_slot2 core in XPS.

ver. 9: 27-Mar-2010 http://warp.rice.edu 5


http://warp.rice.edu

WIRELESS OPEN-ACCESS
Lab 3: Building a Simple Transceiver WA RPY s e

5. Starting with the Lab3_TxRx software project, add a keyboard command to print the RSSI sum
by reading the register in your core.

8 Optional Exercises

If you finish the lab with extra time, here are a few extensions to try:

e Change the frequency sweep rate to switch the slope of your transmitted signal on the spec-
trogram. You’ll have to figure out what value to write to the FreqSweepRate register that
effectively negates the frequency accumulator input.

¢ Add keyboard commands to change the radio’s center frequency and transmit gains.

e Add a keyboard command which triggers a sequential search of each channel, measuring
RSSI and selecting the quietest one for your transmission.

ver. 9: 27-Mar-2010 http://warp.rice.edu 6


http://warp.rice.edu

	1 Introduction
	2 Sinusoid Generator Model
	3 Generating the Transmitter Core
	4 Integrating the Transmitter Model
	5 Driving the System from Software
	6 Testing the Transmitter in Hardware
	7 Adding the Receiver Model
	8 Optional Exercises

