W A R P WIRELESS OPEN-ACCESS
RESEARCH PLATFORM

Lab 3: Building a Simple Transmitter

Patrick Murphy & Siddharth Gupta

Rice University
WARP Project

Document Revision 8

July 13, 2008

WIRELESS OPEN-ACCESS
Lab 3: Building a Simple Transmitter WA R P RESEARCH PLATFORM

1 Introduction

The goal of this lab exercise is to build a simple transmitter and test it in hardware. The transmitter
model will be built in System Generator, converted to a peripheral core and integrated with WARP
platform support packages in Xilinx Platform Studio. When complete, the design will transmit a
sweeping sinusoid at RF using the WARP FPGA and Radio boards.

Note: All files are stored in C:\workshop\userN\ where userN is your user login location. This
location will be referred to as .\ for the rest of the lab.

2 Sinusoid Generator Model

The first step is to explore the sweeping sinusoid generator model in System Generator.

1.
2.
3.

Open MATLAB 2007a and change directory to .\Lab3_SweepingTx\sysgen\.
Open the System Generator model sweeping_tx.mdl.

Run the model and view the output on the Simulink scope. You should see a sweeping
sinusoid.

Double-click the FreqSweepRate block and change the Initial Value parameter to 10.

Run the simulation again and verify that the rate of frequency sweep is slower than before.

3 Generating the Peripheral Core

The next step is to convert this model into a peripheral core with a PLB46 bus interface. This
interface will allow the PowerPC processor to write the registers in the model to change its behavior
at run-time.

1.

Open the Simulink library browser, expand the Xilinx Blockset and click on the Index group.
Find the EDK Processor block in the block listing. Drag this block into the sweeping_tx model.

. Double click the EDK Processor block and click Add. This will populate the memory map

with entries for each software-accessible register in the model. In this case, there should be
two registers: FreqSweepEnable and FreqSweepRate. Click OK to dismiss this window.

Double-click the System Generator block. Make sure its parameters match those shown in
Figure 1.

Click the Settings button. In the EDK Project section click the folder icon. Navigate to
.\Lab3_SweepingTx\xps\system. xmp, click Open, then click OK.

Finally, click Generate. System Generator will construct the VHDL design of your model and
export it to the EDK project you'll use below. This process will take a few minutes. If it’s
successful, the dialog box will say Generation Complete.

If the process completes successfully, save and close the model and exit MATLAB.

ver. 8: 13-Jul-2008

http://warp.rice.edu 1

http://warp.rice.edu

Lab 3: Building a Simple Transmitter

WA R P WIRELESS OPEN-ACCESS
RESEARCH PLATFORM

<) System Generator: sweeping_Etx_runthre =10 x|

— Compilation Options

Compilation :
,i"ixport as a pcore to EDK Settings... |
Part :

[= |virtex2p xcovpro-6ff1517

Target directory :

l‘.fsweepinng_VDU Browvse... |

Synthesis tool : Hardwvare description language :

[xsT =] |wHoL |

|_ Cregte testbench]_ Import a8 configurable subsystem
— Clocking Options

FPGA clock period (ns) : Clock pin location :

e |

Multirate implementation : DCM input clock period (ns) :

IC\DE k Enables ;I l1 (1]

[~ Provide clock enable clear pin

|‘»“w: cording to Block Settings j

Simulink system period (sec) : l1

Block icon display: |Default j

Genera’(el OK | Apply | Cancel | Help |

Figure 1: System Generator parameters for PLB core generation

4 Integrating the Transmitter Model

We have provided a pre-built project in Xilinx Platform Studio for this exercise. We built this project
using Base System Builder, just like you used in the previous lab exercise. This step integrates your
custom transmitter with the hardware/software platform in the EDK project.

1.

Open Xilinx Platform Studio. When prompted, select Open a recent project, click OK, then
navigate to .\Lab3_SweepingTx\xps\system.xmp.

Click the IP Catalog tab on the left of the screen, and expand the Project Local pcores /
USER category.

Double-click the sweeping_tx_plbw core and click ‘Yes’.

Click the Bus Interface button in the middle of the screen and look for the sweeping_tx_plbw
core in the list of included peripherals. Expand the core’s entry and click the hollow yellow
circle to attach the core to the PLB.

. Switch to the Ports view and scroll down to the sweeping_tx_plbw entry. Expand the entry.

You'll see two ports: radio2_DAC_I and radio2_DAC_Q. These ports represent the two DAC

ver. 8: 13-Jul-2008

http://warp.rice.edu 2

http://warp.rice.edu

WIRELESS OPEN-ACCESS
Lab 3: Building a Simple Transmitter WA R P RESEARCH PLATFORM

blocks in the System Generator model. For each port, click its drop-down list and choose New
Connection. This will create a new net for each port.

6. Scroll to the radio_bridge_slot_2 core and expand its entry. Scroll down the list of ports to
user_DAC_I and user_DAC_Q. In the drop-down list for each, select the corresponding new
net created in the previous step; the nets will probably be named sweeping_tx_plbw_0_radio2_dac_i
and sweeping_tx_plow_0_radio2_dac_qg. By choosing these nets, you're connecting the out-
puts of the transmitter model to the FPGA pins mapped to the radio board’s D/A converters.

7. When complete, your ports list should look like those shown in Figure 2 (the order of the ports
may be different in your project).

- sweeping i pbw 0
i radio2_dac_q |sweeping tx plbw 0 radio2 dac q _v|
""" radio2_dac_i |sweeping tx plbw 0 radio2 dac i _v|
2 USER O

- P xps e O

- 3232

-« ok board config

- <P clock_generafor O
- <P radio_bridge_siof 2
R ser_DAC_() sweeping tx plbw 0 radio? dac o K|
~user_DaAC_| sweeping tx plbw 0 radio2 dac i
user_ADC_Q {No Connection |
“euser_ADC_| [No Connection >

SO o O oy O g g B g PRI

Figure 2: Custom core and radio bridge ports

8. Switch to the Addresses view and click Generate Addresses. When this process finishes,
the sweeping_tx_plbw core will have an automatically assigned base address.

9. Choose Hardware — Generate Bitstream to begin the hardware implementation process. As
in the previous lab exercise, this step will take 10-15 minutes. While it’s running, you can look
through the software project (described in the next section).

5 Driving the System from Software

1. We have provided a software project which handles the required radio configuration. It also
writes suitable values to the two registers in the sweeping_tx_plbw core.

2. Switch to the Applications tab on the left of the screen. Expand the Sources list and double-
click the one file entry.

3. Look through the C code to understand how the radio is setup and controlled through the
radio_controller core. Scroll down in the code and look for the two lines which write reg-
isters in the transmitter model. These lines start with XIo_0ut32. Notice the first argu-
ments in these function calls: XPAR_SWEEPING_TX_PLBWP_O_MEMMAP_FREQSWEEPENABLE and
XPAR_SWEEPING_TX_PLBWP_O_MEMMAP_FREQSWEEPRATE. These constants define the memory
addresses of the two registers in the transmitter model. The tools create these constants
automatically.

6 Testing the Design in Hardware

1. Make sure your WARP FPGA board is connected to power and USB.

ver. 8: 13-Jul-2008 http:/warp.rice.edu 3

http://warp.rice.edu

WA R P WIRELESS OPEN-ACCESS
RESEARCH PLATFORM

Lab 3: Building a Simple Transmitter

2. In XPS, Choose Device Configuration — Update Bitstream. This will compile any code
changes and update the FPGA programming file.

3. Using iMPACT on your local PC, download the bitstream
W:\Lab3_SweepingTx\xps\implementation\download.bit to your FPGA board.

4. If everything works, the radio’s green LED will illuminate to indicate the radio is transmitting,
and your node will be generating a sweeping sinusoid at RF. You can observe the waveform
on the spectrum analyzer in the lab. It should look something like Figure 3.

Figure 3: Spectrum Analyzer Output

ver. 8: 13-Jul-2008 http:/warp.rice.edu 4

http://warp.rice.edu

WIRELESS OPEN-ACCESS
Lab 3: Building a Simple Transmitter WA R P RESEARCH PLATFORM

7 Optional Exercises

If you finish the lab with extra time, here are a few extensions to try:

e Change the frequency sweep rate to switch the slope of your transmitted signal on the spec-
trogram. You’ll have to figure out what value to write to the FreqSweepRate register that
effectively negates the frequency accumulator input.

e Use the left/right push buttons to change the radio center frequency. This will involve modi-
fying the callback functions called by the user I/O interrupt for each push button. The code
provided already uses the center/up buttons to dis/enable the radio; these are a good model
for using the other buttons.

e Try altering some of your radio’s settings and observe the changes on the spectrum analyzer.
You will need extra functions from the radio controller driver
(see http://warp.rice.edu/WARP_API)

— Change the radio transceiver’s center frequency to a different channel.

— Increase/decrease your radio’s transmit gain.

— Change the transmit low-pass filter bandwidth to its highest setting to see a wider sweep
of your transmitted sinusoids.

ver. 8: 13-Jul-2008 http:/warp.rice.edu 5

http://warp.rice.edu/WARP_API
http://warp.rice.edu

	1 Introduction
	2 Sinusoid Generator Model
	3 Generating the Peripheral Core
	4 Integrating the Transmitter Model
	5 Driving the System from Software
	6 Testing the Design in Hardware
	7 Optional Exercises

