
Lab 5: halfMac with Software Control

Chris Hunter & Patrick Murphy

Rice University

WARP Project

Document Revision 12

March 30, 2010



Lab 5: halfMac with Software Control

1 Introduction

In the previous lab, WARP nodes had no concept of addresses. The “MAC” was little more than
software that directly transferred packets from Ethernet to the wireless PHY and vice versa. In
this lab, we will implement a “true” medium-access layer to control nodes in the topology shown in
Figure 1.

Node 0 10.0.0.20

Node 1 10.0.0.1

Node 2 10.0.0.2

Node 3 10.0.0.3

Node 4 10.0.0.4

Node 16 10.0.0.16

Node 5 10.0.0.5

...

UDP Video

Figure 1: Lab Topology

In this experiment, a central transmitter will stream UDP video to each of the participants’ PCs.
Each wireless node has a unique MAC address, allowing the node to process only its own packets.
For the purpose of this lab, the local MAC addresses are set using the DIP switch on each WARP
FPGA board; each node is already configured with a different DIP switch value.

The central node implements an ARP table, mapping WARP MAC addresses to the attached
PC’s IP address. This node also implements a modified version of a CSMA MAC. The central
node’s MAC expects to receive an ACK for each packet it sends. It will re-transmit unacknowledged
packets 8 times before dropping the packet entirely.

Note: All files are stored in C:\workshop\. This location will be referred to as .\ for the rest of
the lab.

ver. 12: 30-Mar-2010 http://warp.rice.edu 1

http://warp.rice.edu


Lab 5: halfMac with Software Control

In this lab, you need to implement code which realizes the following behavior:

• Check the destination address of each received wireless packet. If it is addressed to your
node, send an ACK to node 0 and send the packet via Ethernet.

• If a packet is received via Ethernet, the MAC should send it wirelessly to node 0. You do not
need to implement the backoff/retransmit state machine.

This behavior is illustrated in Figure 2.

Transmit States

Receive States

Idle

Accept Packet 
from Source

Receive Packet
via PHY

Transmit DATA
via PHY

SELF

Packet Type

Destination
Address

Deliver Packet to 
Sink

Transmit ACK
via PHY

DATA

OTHER

OTHER

Figure 2: halfMac State Diagram

In effect, your code will be responsible for the receive half of the csmaMac reference design
(also available in the XPS project). Hence, the name of this lab exercise is “halfMac.” In this variant,
you will use software calls to generate and send acknowledgement packets in response to good
data frames.

ver. 12: 30-Mar-2010 http://warp.rice.edu 2

http://warp.rice.edu


Lab 5: halfMac with Software Control

It is important to note that, while the transmitter has a MAC capable of retransmissions, your
MAC implementation will not. Because of the unidirectional nature of UDP, the only Ethernet traffic
which will be forwarded to node 0 is an ARP reply to establish the Ethernet MAC address lookup
tables on both PCs.

The WARP API will be required throughout this lab exercise. Skeleton code is provided that
should compile without user modification.

2 Instructions

1. Open the .\Labs4to6\system.xmp associated with this lab

2. Because we will only be dealing with the software project in this lab, we can ignore everything
in the “System Assembly View.” Click on the “Applications” tab as shown in the first plot of
Figure 3

3. There are two software projects in this tab, as shown in second plot of Figure 3. The “HALF-
MAC SERVER” project is provided for reference only; this is the code which is running on
the central wireless node. You are responsible for modifying the “HALFMAC CLIENT SW”
project. By right-clicking on the projects, you can select which is selected for initialization by
checking “Mark to Initialize BRAMs.” In the interest of maintaining the custom network in this
lab, please do not download the server project to the board.

Figure 3: XPS Window

ver. 12: 30-Mar-2010 http://warp.rice.edu 3

http://warp.rice.edu


Lab 5: halfMac with Software Control

4. Within the “Sources” and “Headers” hierarchies, you will be greeted by a number of files
required for the project to build:

• halfmac client sw.c - This file is the where all of the user’s modifications will take place.
It is the top-level code where the MAC algorithm resides.

• warpmac.c and warpphy.c - These file contains all of the MAC development and PHY
interface framework. These frameworks provide the user high-level functions for ab-
stracting interactions with the wireless and wired network interfaces.

5. Open the halfmac client sw.c file and modify the skeleton code to implement the functionality
specified in the comments.

3 Testing your MAC

3.1 Video Reception

Launch VLC Media Player, open the network stream as shown in Figure 4, select “UDP” and click
“play.” Finally un-mute the computer.

(a) Open the network stream (b) UDP on port 1234

Figure 4: VLC configuration

3.2 Oscilloscope Measurements

A key metric in MAC performance is the turn-around-time (TAT) in responding to the reception of
a wireless packet with the transmission of another wireless packet. In this area (among others),
WARP is uniquely capable since wireless processing is local to the board. Using an oscilloscope,
trigger on the falling edge of the “RX” signal and observe the rising edge of the “TX.” This will allow
you to measure the TAT between data reception and ACK transmission. Please notify a workshop
instructor for assistance with the oscilloscopes. Measure the following:

1. TAT between fall of RX to rise of TX:

2. TX jitter relative to fall of Rx:

ver. 12: 30-Mar-2010 http://warp.rice.edu 4

http://warp.rice.edu

	1 Introduction
	2 Instructions
	3 Testing your MAC
	3.1 Video Reception
	3.2 Oscilloscope Measurements


