Networking on WARP

Chris Hunter Rice University

WARP Workshop at Rice University July 15, 2008

Today's Agenda

- Outstanding questions?
- Networking on WARP lecture
- Labs 4, 5, and 6
- Workshop wrap-up

Physical Layer Basics

Physical Layer Basics

Network Layer Basics

Network Layer Basics

Network Layer Basics

Targeting WARP Hardware

(Understanding the Development Environment)

Targeting WARP Hardware

(Understanding the Development Environment)

Some Perspective - The OSI Model

Application

Presentation

Session

Transport

Network

Link

Physical

Some Perspective - The OSI Model

The OSI Model

Application Presentation

Session

Transport

Network

Link

Physical

The OSI Model

Our Focus: Medium Access Control

The OSI Model

Application

Presentation

Why?

• All commercial 802.11 chipsets are closed

Many opportunities for cross-layer research

Physical

Outline

- Overview of Medium Access Control
- Design Realization
- Example
- Lab Exercises

Medium Access Control Overview

Received a jumbled packet... infer a packet collision

Received a jumbled packet... infer a packet collision

What if we ACK every transmit, and retransmit when we receive no ACK?

User 6

User 3

Random Backoffs

- PROBLEM:
 Retransmissions can collide ad infinitum!
- **SOLUTION:** Wait a random amount of time before a retransmit

Contention Window increases over time

Important Extensions

- Carrier Sense Multiple Access (CSMA)
 - Listen to the medium before sending
- Request to Send / Clear to Send (RTS/CTS)
 - "Reserve" the medium with a short packet before sending a long one

- Program high-level MAC behavior independent of hardware
- Use the WARPMAC framework to stitch the MAC to hardware

 No way to "lock" the framework and have it support all possible future MAC layers

 No way to "lock" the framework and have it support all possible future MAC layers

Solution: WARPMAC must grow with new algorithms

 No way to "lock" the framework and have it support all possible future MAC layers

Solution: WARPMAC must grow with new algorithms Problem: How do we maintain sync between designs?

Snapshots of the WARP repository

- Snapshots of the WARP repository
- Free, open-source releases at regular intervals
 - Today's exercises are on nearly-released
 Reference Design v10

- Snapshots of the WARP repository
- Free, open-source releases at regular intervals
 - Today's exercises are on nearly-released Reference Design v10
- Keeps pace with Xilinx design tools

- Snapshots of the WARP repository
- Free, open-source releases at regular intervals
 - Today's exercises are on nearly-released Reference Design v10
- Keeps pace with Xilinx design tools
- Reference design is an example of:
 - a working PHY
 - a working MAC
 - the way all the pieces fit together

WARPMAC

WARPPHY

WARPMAC

WARPPHY

WARPMAC

WARPPHY

PHY Driver:

- Configure very low-level parameters
 - Correlation thresholds
 - FFT scaling parameters
 - Filter coefficients
 - Etc.

User Code WARPMAC **WARPPHY** Drivers

WARPMAC

WARPPHY

WARPMAC

WARPPHY

Radio Controller Driver:

- Set center frequency
- Switch from Rx to Tx mode and vice versa

WARPMAC

WARPPHY

WARPMAC

WARPPHY

PHY Control:

- Provides control over PHY commonalities
 - General initialization command
 - Configure constellation order
 - "Start" and "Stop" the PHY

User Code WARPMAC **WARPPHY** Drivers

WARPMAC

WARPPHY

WARPMAC

WARPPHY

Mostly PHY agnostic

User Code

WARPMAC

Completely PHY dependent

WARPPHY

WARPMAC

WARPPHY

MAC Control:

- Provides control over MAC commonalities
 - Timers for timeouts, backoffs, etc.
 - Carrier-sensing functions
 - Register user callbacks to ISRs
 - Etc.

User Code

WARPMAC

WARPPHY

WARPMAC

WARPPHY

WARPMAC

WARPPHY

User-level MAC Algorithms:

- High-level MAC algorithms
- Some examples so far:
 - Aloha
 - Carrier-sensing MAC
 - Opportunistic Auto-Rate (OAR)
 - MAC Workshop Exercises

User Code

WARPMAC

WARPPHY

WARPMAC

WARPPHY

An example: CSMA

- Carrier-sensing Multiple Access
- Serves as a foundation for a large class of other random access protocols
- Fairly simple algorithm

Transmit States

Transmit States

emacRx_int_handler

- Starts DMA transfer from EMAC to PHY

emacRx_callback

- Constructs Macframe header for data packet
If medium is idle {

warpmac_prepPhyForXmit

- Configures PHY
- Copies Macframe header into PHY's buffer

warpmac_startPhyXmit

- Disables packet detection
- Starts radio controller's transmit state machine

warpmac_finishPhyXmit

- Polls PHY and waits for it to complete
- Enables packet detection and radio reception
- Starts a timeout timer

```
If medium is busy {
```

- Starts a backoff timer

- Clears EMAC and interrupt controller

WARPMAC
User-Code

Receive States Receive Packet via PHY

Destination Address

Packet Type

SELF

ACK

Clear TIMEOUT

OTHER

DATA

Transmit ACK

via PHY

Deliver Packet to Sink

Receive States

phyRx_goodHeader_int_handler - Copies header into Macframe phyRx_goodHeader_callback

- Checks address/type fields of Macframe header If data {

- Constructs an ACK Macframe to prepare for a complete Rx packet

warpmac_prepPhyForXmit

- Configures PHY
- Copies Macframe header into PHY's buffer
- Polls PHY receiver and waits for a "Good" or "Bad" stateIf Good {

warpmac_startPhyXmit

- Disables packet detection
- Starts radio controller's transmit state machine

warpmac_prepEmacForXmit

- Starts DMA transfer from PHY to EMAC

warpmac_finishPhyXmit

- Polls PHY and waits for it to complete
- Enables packet detection and radio reception

warpmac_startEmacXmit

- Polls DMA and waits for it to complete
- Starts EMAC transmission

}

If acknowledgment {
 - Clears timeout timer
}

- Clears interrupts in PHY and interrupt controller

WARPMAC
User-Code

Receive States

phyRx_goodHeader_int_handler - Copies header into Macframe phyRx_goodHeader_callback - Checks address/type fields of Macframe header If data { - Constructs an ACK Macframe to prepare for a complete Rx packet warpmac_prepPhyForXmit - Configures PHY - Copies Macframe header into PHY's buffer

warpmac_startPhyXmit

- Disables packet detection
- Starts radio controller's transmit state machine

warpmac_prepEmacForXmit

- Starts DMA transfer from PHY to EMAC

- Polls PHY receiver and waits for a "Good" or "Bad" state

warpmac_finishPhyXmit

- Polls PHY and waits for it to complete
- Enables packet detection and radio reception

warpmac_startEmacXmit

- Polls DMA and waits for it to complete
- Starts EMAC transmission

```
}

If acknowledgment {
    - Clears timeout timer
}
```

If Good {

- Clears interrupts in PHY and interrupt controller

Fast Turn-Around Time (TAT)

WARPMAC
User-Code

Timer States

Timer States

timer_int_handler timer_callback - Checks timer type If timeout { - Increments retransmission counter - If maximum retransmissions reached, returns - If not, starts a backoff timer If backoff { warpmac_prepPhyForXmit - Configures PHY - Copies Macframe header into PHY's buffer warpmac_startPhyXmit - Disables packet detection - Starts radio controller's transmit state machine warpmac_finishPhyXmit - Polls PHY and waits for it to complete - Enables packet detection and radio reception - Starts a timeout timer - Clears interrupts in timer and interrupt controller

WARPMAC
User-Code

WARPMAC Structs

Macframe:

```
phyHeader header /* Another struct */
unsigned char isNew /* Flag for new packets */
```

WARPMAC Structs

phyHeader:

```
unsigned char fullRate; /* Payload modulation rate */
unsigned char reserved4; /* Unused */
unsigned short int length; /* Payload length */
unsigned char pktType; /* Packet type */
unsigned char destAddr[6]; /* Destination address */
unsigned char srcAddr[6]; /* Source address */
unsigned char currReSend; /* Re-send count */
unsigned char reserved I; /* Unused */
unsigned char reserved2; /* Unused */
unsigned char reserved3; /* Unused */
unsigned short int checksum; /* CRC placeholder */
```

Fully documented in API (http://warp.rice.edu/WARP_API)

Lab Exercises

- Lab 4 noMAC: Too simple to be a MAC
- Lab 5 halfMAC: Receive-half of a MAC
- Lab 6 hopMAC: Channel-hopping extension

noMac

Remember to use the API:

http://warp.rice.edu/WARP_API

halfMac

halfMac

halfMac

Remember to use the API:

http://warp.rice.edu/WARP_API

hopMac

hopMac

Remember to use the API:

http://warp.rice.edu/WARP_API

Logistics

- Review forms
- Contacting us
 - Support & technical questions
 - http://warp.rice.edu/forums/
 - Hardware sales
 - Mango Communications (http://mangocomm.com/)